As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The main objective of transfer in reinforcement learning is to reduce the complexity of learning the solution of a target task by effectively reusing the knowledge retained from solving a set of source tasks. One of the main problems is to avoid negative transfer, that is the transfer of knowledge across tasks that are significantly different that may worsen the learning performance. In this paper, we introduce a novel algorithm that selectively transfers samples (i.e., tuples 〈s,a,s′,r〉) from source to target tasks and that uses them as input for batch reinforcement-learning algorithms. By transferring samples from source tasks that are mostly similar to the target task, we reduce the number of samples actually collected from the target task to learn its solution. We show that the proposed approach is effective in reducing the learning complexity, even when some source tasks are significantly different from the target task.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.