As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Geographic knowledge graphs can have an important role in delivering interoperability, accessibility and the demands of conceptualization in geographic information science (GIS). However, the massive amount of accompanying information and the enormous diversity of geographic knowledge graphs limits their applicability and hinders the widespread adoption of this useful structured knowledge.
This book, Geographic Knowledge Graph Summarization, focuses on the ways in which geographic knowledge graphs can be digested and summarized. Such a summarization would relieve the burden of information overload for end users and reduce data storage, as well as speeding up queries and eliminating ‘noise’. The book introduces the general concept of geospatial inductive bias and explains the different ways in which this idea can be used in the summarization of geographic knowledge graphs.
The book breaks up the task of summarization into separate but related components, and after an introduction and a brief overview of concepts and theories, Chapters 3, 4 and 5 explore hierarchical place type structure, multimedia leaf nodes, and general relation and entity components respectively. Chapter 6 presents a spatial knowledge map interface which illustrates the effectiveness of summarization.
The book integrates top-down knowledge engineering and bottom-up knowledge learning methods, and will do much to promote awareness of this fascinating area and related issues.
Geographic knowledge graphs play a significant role in the geospatial semantics paradigm for fulfilling the interoperability, the accessibility, and the conceptualization demands in geographic information science. However, due to the immense quantity of information accompanying and the enormous diversity of geographic knowledge graphs, there are many challenges that hinder the applicability and mass adoption of such useful structured knowledge. In order to tackle these challenges, this dissertation focuses on devising ways in which geographic knowledge graphs can be digested and summarized. Such a summarization task, on the one hand lifts the burden of information overload for end users, on the other hand facilitates the reduction of data storage, speeds up queries, and helps eliminate noise. The main contribution of this dissertation is that it introduces the general concept of geospatial inductive bias and explains different ways this idea can be used in the geographic knowledge graph summarization task. By decomposing the task into separate but related components, this dissertation is based upon three peer-reviewed articles (Chapter 3, Chapter 4, and Chapter 5) which focus on the hierarchical place type structure, multimedia leaf nodes, and general relation and entity components respectively. Chapter 6 presents a spatial knowledge map interface to illustrate the effectiveness of summarizing geographic knowledge graphs. Throughout the dissertation, top-down knowledge engineering and bottom-up knowledge learning methods are integrated. We hope this dissertation would promote the awareness of this fascinating area and motivate researchers to investigate related questions.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.