As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a novel approach for the extraction of gene regulatory networks from DNA microarray data. The approach is characterized by the integration of data coming from static and dynamic experiments, exploiting also prior knowledge on the biological process under analysis. A starting network topology is built by analyzing gene expression data measured during knockout experiments. The analysis of time series expression profiles allows to derive the complete network structure and to learn a model of the gene expression dynamics: to this aim a genetic algorithm search coupled with a regression model of the gene interactions is exploited. The method has been applied to the reconstruction of a network of genes involved into the Saccharomyces Cerevisiae cell cycle. The proposed approach was able to reconstruct known relationships among genes and to provide meaningful biological results.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.