As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper addresses the problem of joint tracking and classification (JTC) of maneuvering targets via sequential Monte Carlo (SMC) techniques. A general framework of the problem is presented within the SMC. A SMC algorithm is developed, namely a Mixture Kalman filter (MKF), which accounts for speed and acceleration constraints. The MKF is applied to airborne targets: commercial and military aircraft. The target class is modeled as an independent random variable, which can take values over the discrete class space with equal probability. A multiple-model structure in the class space is implemented, which provides reliable classification. The performance of the proposed MKF is evaluated by simulation over typical target scenarios.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.