As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In order to compute the reachability set of infinite-state models, one needs a technique for exploring infinite sequences of transitions in finite time, as well as a symbolic representation for the finite and infinite sets of configurations that are to be handled. The representation problem can be solved by automata-based methods, which consist in representing a set by a finite-state machine recognizing its elements, suitably encoded as words over a finite alphabet. Automata-based set representations have many advantages: They are expressive, easy to manipulate, and admit a canonical form.
In this survey, we describe two automata-based structures that have been developed for representing sets of numbers (or, more generally, of vectors): The Number Decision Diagram (NDD) for integer values, and the Real Vector Automaton (RVA) for real numbers. We discuss the expressiveness of these structures, present some construction algorithms, and give a brief introduction to some related acceleration techniques.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.