As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We present here an introduction to the concept of localizable entanglement (LE). It is defined as the maximum entanglement that can be localized, on average, between two parties of a multipartite system by performing local measurements on the remaining parties. This entanglement measure leads naturally to notions like entanglement length and entanglement fluctuations. For both spin-1/2 and spin-1 systems we prove that the LE of a pure quantum state can be lower bounded by connected correlation functions. We further propose a scheme, based on matrix-product states and the Monte Carlo method, to efficiently calculate the LE for quantum states of a large number of spins. The virtues of LE are illustrated for various spin models. In particular, characteristic features of a quantum phase transition such as a diverging entanglement length can be observed. We also give examples for pure quantum states exhibiting a diverging entanglement length but finite correlation length. We have numerical evidence that the ground state of the antiferromagnetic spin-1 Heisenberg chain can serve as a perfect quantum channel. Furthermore, we apply the numerical method to mixed states and study the entanglement as a function of temperature.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.