

We present here an introduction to the concept of localizable entanglement (LE). It is defined as the maximum entanglement that can be localized, on average, between two parties of a multipartite system by performing local measurements on the remaining parties. This entanglement measure leads naturally to notions like entanglement length and entanglement fluctuations. For both spin-1/2 and spin-1 systems we prove that the LE of a pure quantum state can be lower bounded by connected correlation functions. We further propose a scheme, based on matrix-product states and the Monte Carlo method, to efficiently calculate the LE for quantum states of a large number of spins. The virtues of LE are illustrated for various spin models. In particular, characteristic features of a quantum phase transition such as a diverging entanglement length can be observed. We also give examples for pure quantum states exhibiting a diverging entanglement length but finite correlation length. We have numerical evidence that the ground state of the antiferromagnetic spin-1 Heisenberg chain can serve as a perfect quantum channel. Furthermore, we apply the numerical method to mixed states and study the entanglement as a function of temperature.