As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper describes a speech-to-text system for semi-spontaneous Estonian speech. The system is trained on about 100 hours of manually transcribed speech and a 300M word text corpus. Compound words are split before building the language model and reconstructed from recognizer output using a hidden event N-gram model. We use a three pass transcription strategy with unsupervised speaker adaptation between individual passes. The system achieves a word error rate of 34.6% on conference speeches and 25.6% on radio talk shows.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.