As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work we demonstrate the possibility of estimating the wind environment of a UAV without specialised sensors, using only the UAV’s trajectory, applying a causal machine learning approach. We implement the causal curiosity method which combines machine learning times series classification and clustering with a causal framework. We analyse three distinct wind environments: constant wind, shear wind, and turbulence, and explore different optimisation strategies for optimal UAV manoeuvres to estimate the wind conditions. The proposed approach can be used to design optimal trajectories in challenging weather conditions, and to avoid specialised sensors that add to the UAV’s weight and compromise its functionality.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.