As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Advances in communication technologies have contributed to the proliferation of distributed datasets. The most effective approach to distributed learning is to learn locally and then combine the local models. In general, distributed algorithms assume that there is a single model that could be induced from the distributed datasets. Under this view, distribution is treated exclusively as a technical issue. However, real-world distributed datasets frequently present an intrinsic data skewness among their partitions. Despite of its importance, up to the authors’ knowledge, its impact has been barely investigated in the literature. In this paper, the performance of different cluster-based distributed learning methods is analyzed over distinct scenarios by incrementing the differences in the probabilistic distribution of data among partitions. Based on these results the best approach is suggested at every scenario.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.