As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Ensemble learning is a well established machine learning approach that utilises a number of classifiers to aggregate the decision about determining the class label. In its basic form this aggregation is achieved via majority voting. A generic approach, termed EV-Ensemble, for evolving a new ensemble from an existing one is proposed in this paper. This approach is applied to the high performance ensemble technique Random Forests. This study uses a genetic algorithm approach to further enhance the accuracy of Random Forests, based on the EV-Ensemble approach. The new technique is termed as Genetic Algorithm based Random Forests (GARF). Our extensive experimental study has proved that Random Forests performance could be boosted when evolved using the genetic algorithm approach.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.