As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recognizing activities in real-world videos is a challenging AI problem. We present a novel combination of standard activity classification, object recognition, and text mining to learn effective activity recognizers without ever explicitly labeling training videos. We cluster verbs used to describe videos to automatically discover classes of activities and produce a labeled training set. This labeled data is then used to train an activity classifier based on spatio-temporal features. Next, text mining is employed to learn the correlations between these verbs and related objects. This knowledge is then used together with the outputs of an off-the-shelf object recognizer and the trained activity classifier to produce an improved activity recognizer. Experiments on a corpus of YouTube videos demonstrate the effectiveness of the overall approach.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.