As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Graph Neural Networks (GNNs) are important across different domains, such as social network analysis and recommendation systems, due to their ability to model complex relational data. This paper introduces subgraph queries as a new task for deep graph learning. Unlike traditional graph prediction tasks that focus on individual components like link prediction or node classification, subgraph queries jointly predict the components of a target subgraph based on evidence that is represented by an observed subgraph. For instance, a subgraph query can predict a set of target links and/or node labels. To answer subgraph queries, we utilize a probabilistic deep Graph Generative Model. Specifically, we inductively train a Variational Graph Auto-Encoder (VGAE) model, augmented to represent a joint distribution over links, node features and labels. Bayesian optimization is used to tune a weighting for the relative importance of links, node features and labels in a specific domain. We describe a deterministic and a sampling-based inference method for estimating subgraph probabilities from the VGAE generative graph distribution, without retraining, in zero-shot fashion. For evaluation, we apply the inference methods on a range of subgraph queries on six benchmark datasets. We find that inference from a model achieves superior predictive performance, surpassing independent prediction baselines with improvements in AUC scores ranging from 0.06 to 0.2 points, depending on the dataset.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.