As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Monte-Carlo Tree Search (MCTS) is state of the art for online planning in large MDPs. It is a best-first, sample-based search algorithm in which every state in the search tree is evaluated by the average outcome of Monte-Carlo rollouts from that state. These rollouts are typically random or directed by a simple, domain-dependent heuristic. We propose Nested Monte-Carlo Tree Search (NMCTS), in which MCTS itself is recursively used to provide a rollout policy for higher-level searches. In three large-scale MDPs, SameGame, Clickomania and Bubble Breaker, we show that NMCTS is significantly more effective than regular MCTS at equal time controls, both using random and heuristic rollouts at the base level. Experiments also suggest superior performance to Nested Monte-Carlo Search (NMCS) in some domains.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.