As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Learning to Rank (LTR) refers to machine learning techniques for training a model in a ranking task. LTR has been shown to be useful in many applications in information retrieval (IR). Cross language information retrieval (CLIR) is one of the major IR tasks that can potentially benefit from LTR to improve the ranking accuracy. CLIR deals with the problem of expressing query in one language and retrieving the related documents in another language. One of the most important issues in CLIR is how to apply monolingual IR methods in cross lingual environments. In this paper, we propose a new method to exploit LTR for CLIR in which documents are represented as feature vectors. This method provides a mapping based on IR heuristics to employ monolingual IR features in parallel corpus based CLIR. These mapped features are considered as training data for LTR. We show that using LTR trained on mapped features can improve CLIR performance. A comprehensive evaluation on the English-Persian CLIR suggests that our method has significant improvements over parallel corpora based methods and dictionary based methods.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.