As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Developmental robotics studies and experiments mechanisms for autonomous life-long learning of skills in robots and humans. One of the crucial challenges is due to the sharp contrast between the high-dimensionality of their sensorimotor space and the limited number of physical experiments they can make within their life-time. This also includes the capability to adapt skills to changing environments or to novel tasks. To achieve efficient life-long learning in such complex spaces, humans benefit from various interacting developmental mechanisms which generally structure exploration from simple learning situations to more complex ones. I will present recent research in developmental robotics that has proposed several ways to transpose these developmental learning mechanisms to robots. In particular, I will present and discuss computational mechanisms of intrinsically motivated active learning, which automatically select training examples [4] or tasks [2] of increasing complexity, and their interaction with imitation learning [3], as well as maturation and body growth where the number of sensori and motor degrees-of-freedom evolve through phases of freezing and freeing
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.