As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Many AI problems arising in a wide variety of fields such as machine learning, semantic web, network communication, computer vision, and robotics can elegantly be encoded and solved using probabilistic graphical models. Often, however, we are facing inference problems with symmetries and redundancies only implicitly captured in the graph structure and, hence, not exploitable by efficient inference approaches. A prominent example are probabilistic logical models that tackle a long standing goal of AI, namely unifying first-order logic — capturing regularities and symmetries — and probability — capturing uncertainty. Although they often encode large, complex models using few rules only and, hence, symmetries and redundancies abound, inference in them was originally still at the propositional representation level and did not exploit symmetries. This paper is intended to give a (not necessarily complete) overview and invitation to the emerging field of lifted probabilistic inference, inference techniques that exploit these symmetries in graphical models in order to speed up inference, ultimately orders of magnitude.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.