As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Brain imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in understanding the neurocognitive phenotype and associated challenges of many neurological disorders, providing detailed insights into the structural alterations in the brain. Despite advancements, the links between cognitive performance and brain anatomy remain unclear. The complexity of analyzing brain MRI scans requires expertise and time, prompting the exploration of artificial intelligence for automated assistance. In this context, unsupervised deep learning techniques, particularly Transformers and Autoencoders, offer a solution by learning the distribution of healthy brain anatomy and detecting alterations in unseen scans. In this work, we evaluate several unsupervised models to reconstruct healthy brain scans and detect synthetic anomalies.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.