As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
While Fast Healthcare Interoperability Resources (FHIR) clinical terminology server enables quick and easy search and retrieval of coded medical data, it still has some drawbacks. When searching, any typographical errors, variations in word forms, or deviations in word sequence might lead to incorrect search outcomes. For retrieval, queries to the server must strictly follow the FHIR application programming interface format, which requires users to know the syntax and remember the attribute codes they wish to retrieve. To improve its functionalities, a natural language interface was built, that harnesses the capabilities of two preeminent large language models, along with other cutting-edge technologies such as speech-to-text conversion, vector semantic searching, and conversational artificial intelligence. Preliminary evaluation shows promising results in building a natural language interface for the FHIR clinical terminology system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.