As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In most A.I. planning approaches it is assumed that the planning agent has complete knowledge about its environment. If this is the case the agent acts in two steps: It first plans and then executes its plan. However, humans do usually not behave this simple, as in most real world problems knowledge about the environment is incomplete. To solve real world problems, acting, sensing and planning has to be interleaved in a cyclic manner: Knowledge has to be acquired during plan execution and the plan has to be adopted incrementally to the acquired knowledge. In our work, we employ the Discrete Event Calculus Knowledge Theory (DECKT) and combine it with a Lazy Branching strategy to interleave planning and plan execution for problems with incomplete knowledge: We make optimistic assumptions for unknown contingencies and lazily postpone the planning for a certain contingency until it is resolved. As the Event Calculus accounts for time, the proposed approach allows to combine planning with incomplete knowledge, concurrency and explicit time.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.