As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
For better collaboration among radiologists, the interpretation workload should be evaluated, considering the difference in difficulty for interpreting each case. However, objective evaluation of difficulty is challenging. This study proposes a multimodal classifier of structural and textual data to predict difficulty based on order information and patient data without using images. The classifier showed performance with a specificity of 0.9 and an accuracy of 0.7.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.