As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper concerns supervised classification of text. Rocchio, the method we choose for its efficiency and extensibility, is tested on three reference corpora “20NewsGroups”, “OHSUMED” and “Reuters”, using several similarity measures. Analyzing statistical results, many limitations are identified and discussed. In order to overcome these limitations, this paper presents two main solutions: first constituting Rocchio-based classifier committees, and then using semantic resources (ontologies) in order to take meaning into consideration during text classification. These two approaches can be combined in a Rocchio-based semantic classifier committee.