As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Systematic reviews provide robust evidence but require significant human labor, a challenge that can be mitigated with digital tools. This paper focuses on machine learning (ML) support for the title and abstract screening phase, the most time-intensive aspect of the systematic review process. The existing literature was systematically reviewed and five promising tools were analyzed, focusing on their ability to reduce human workload and their application of ML. This paper details the current state of automation capabilities and highlights significant research findings that point towards further improvements in the field. Directions for future research in this evolving field are outlined, with an emphasis on the need for a cautious application of existing systems.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.