As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Healthcare-associated infections (HAIs) may have grave consequences for patients. In the case of sepsis, the 30-day mortality rate is about 25%. HAIs cost EU member states an estimated 7 billion Euros annually. Clinical decision support tools may be useful for infection monitoring, early warning, and alerts. MONI, a tool for monitoring nosocomial infections, is used at University Hospital Vienna, but needs to be clinically and technically revised and updated. A new, completely configurable pipeline-based system for defining and processing HAI definitions was developed and validated. A network of data access points, clinical rules, and explanatory output is arranged as an inference network, a clinical pipeline as it is called, and processed in a stepwise manner. Arden-Syntax-based medical logic modules were used to implement the respective rules. The system was validated by creating a pipeline for the ECDC PN5 pneumonia rule. It was tested on a set of patient data from intensive care medicine. The results were compared with previously obtained MONI output as a suitable reference, yielding a sensitivity of 93.8% and a specificity of 99.8%. Clinical pipelines show promise as an open and configurable approach to graphically-based, human-readable, machine-executable HAI definitions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.