As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Electroencephalographic (EEG) recordings are employed in order to investigate the brain activity in neuropathological subjects, but unfortunately EEG are often contaminated by artifacts, signals that have no-cerebral origin and therefore distort the EEG analysis. We know that entropy measures reflect the degree of order/disorder of the EEG signal, so that is represents a good instrument for artifacts detection. In this paper we propose a multiresolution analysis, based on EEG wavelet processing, to extract cerebral EEG rhythms. The novelty of this paper is to apply the Wavelet Entropy method not only to Shannon Entropy formulation, but also to Rényi Entropy and Tsallis Entropy formulation in order to characterize the functional dynamics of EEG signal.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.