As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Size constrained clustering has been recently proposed to embed “a priori” knowledge in clustering methods. By exploiting the “string property” we propose an exact and efficient algorithm based on dynamic programming techniques to solve size-constrained one-dimensional clustering problems. We show the applicability of the proposed method in a difficult computational biology problem: the prediction of the transcription start sites of genes. The obtained experimental results clearly show the potential of the proposed approach when compared with previously published methods.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.