As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In the general framework of kernel machines, the adoption of the hinge loss has become more popular than square loss, also because of computational reasons. Since learning reduces to a linear system of equations, in case of very large tasks for which the number of examples is proportional to the input dimension, the solution of square loss regularization is O(ℓ3), where ℓ is the number of examples, and it has been claimed that learning is unaffordable for large scale problems. However, this is only an upper bound, and in-depth experimental analyses indicate that for linear kernels (or in other cases where the kernel matrix will be sparse or decomposed in a way that is known a priori), regularized least square (RLS) is substantially faster than support vector machine (SVM) both at training and test times. In this paper, we give theoretical results to support those experimental findings by proving that there are conditions under which learning of square loss regularization is Θ(ℓ) even for large input dimensions d for which d ≃ ℓ.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.