As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper we show how combining fuzzy sets and reinforcement learning a winning agent can be created for the popular Pac-man game. Key elements are the classification of the state into a few fuzzy classes that makes the problem manageable. Pac-man policy is defined in terms of fuzzy actions that are defuzzified to produce the actual Pac-man move. A few heuristics allow making the Pac-man strategy very similar to the Human one. Ghosts agents, on their side, are endowed also with fuzzy behavior inspired by original design strategy. Performance of this Pac-man is shown to be superior to those of other AI-based Pac-man described in the literature.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.