As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents preliminary results in extracting semantic information from US state public health legislative provisions using natural language processing techniques and machine learning classifiers. Challenges in the density and distribution of the data as well as the structure of the prediction task are described. Decision tree models trained on a unigram representation with TFIDF measures in most cases outperform the baselines by varying margins, leaving room for further improvement.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.