As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Transformation of patient data extracted from a database into fixed-length numerical vectors requires expertise in topical medical knowledge as well as data manipulation—thus, manual feature design is labor-intensive. In this study, we propose a machine learning-based method to for this purpose applicable to electronic medical data recorded during hospitalization, which utilizes unsupervised feature extraction based on graph embedding. Unsupervised learning is performed on a heterogeneous graph using Graph2Vec, and the inclusion of clinically useful data in the obtained embedding representation is evaluated by predicting readmission within 30 days of discharge based on it. The embedded representations are observed to improve predictive performance significantly as the information contained in the graph increases, indicating the suitability of the proposed method for feature design corresponding to clinical information.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.