As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clinical decision support system (CDSS) plays an essential role nowadays and CDSS for treatment provides clinicians with the clinical evidence of candidate prescriptions to assist them in making patient-specific decisions. Therefore, it is essential to find a partition of patients such that patients with similar clinical conditions are grouped together and the preferred prescriptions for different groups are diverged. A comprehensive clinical guideline often provides information of patient partition. However, for most diseases, the guideline is not so detailed that only limited circumstances are covered. This makes it challenging to group patients properly. Here we proposed an approach that combines clinical guidelines with medical data to construct a nested decision tree for patient partitioning and treatment recommendation. Compared with pure data-driven decision tree, the recommendations generated by our model have better guideline adherence and interpretability. The approach was successfully applied in a real-world case study of patients with hyperthyroidism.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.