As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The mainstream approach to the development of ontologies is merging ontologies encoding different information, where one of the major difficulties is that the heterogeneity motivates the ontology merging but also limits high-quality merging performance. Thus, the entity type (etype) recognition task is proposed to deal with such heterogeneity, aiming to infer the class of entities and etypes by exploiting the information encoded in ontologies. In this paper, we introduce a property-based approach that allows recognizing etypes on the basis of the properties used to define them. From an epistemological point of view, it is in fact properties that characterize entities and etypes, and this definition is independent of the specific labels and hierarchical schemas used to define them. The main contribution consists of a set of property-based metrics for measuring the contextual similarity between etypes and entities, and a machine learning-based etype recognition algorithm exploiting the proposed similarity metrics. Compared with the state-of-the-art, the experimental results show the validity of the similarity metrics and the superiority of the proposed etype recognition algorithm.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.