As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Approaches to object localization based on codebooks do not exploit the dependencies between appearance and geometric information present in training data. This work addresses the problem of computing a codebook tailored to the task of localization by applying regularization based on geometric information. We present a novel method, the Regularized Combined Partitional-Agglomerative clustering, which extends the standard CPA method by adding extra knowledge to the clustering process to preserve as much geometric information as needed. Due to the time complexity of the methodology, we also present an implementation on the GPU using nVIDIA CUDA technology, speeding up the process with a factor over 100x.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.