As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
During the last decade, several recommendation systems have been proposed that help people to tackle information overload of digital content by effectively presenting content adapted to user's tastes and needs. However, these personalization technologies are far from perfect and much research is needed to improve the quality of recommendations and, particularly, user satisfaction. In this paper we analyze and extend two relatively recent approaches for improving the effectiveness of recommendation systems: context-aware recommenders, which mainly focus on incorporating contextual information to the recommendation process; and semantically-enhanced recommenders, which focus on incorporating domain semantics. Although these approaches are compatible, how to properly combine them to maximize their strengths is still an unexplored research issue. The objective of this work is to provide the basis for this research. Concretely, we propose and evaluate an improved content-based model that exploits semantics and contextual information in an integrated way.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.