As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The growth and development of early mammalian embryos mainly take place in the fallopian tube, which not only provides nutrients for embryonic growth and development but also offers suitable mechanical conditions. The embryo culture system established in assisted reproductive technology mainly simulates the environment in which oocytes and embryos grow and develop in vivo. However, current in vitro embryo culture is mainly static and cannot completely mimic the mechanical environment in which embryos grow and develop in vivo. Therefore, to more accurately simulate the mechanical environment of embryos in the fallopian tube, we have developed a dynamic culture device to investigate the effects of mechanical stimulation on the in vitro maturation of immature oocytes and their parthenogenetic developmental potential. Immature mice oocytes were subjected to in vitro maturation by static culture and vibration (3 Hz, 6 Hz) with tilting for 15∼16 hours. The maturation of oocytes was observed after the culture period. The mature oocytes were activated by parthenogenesis and the rate of embryo compaction and formation of parthenogenetic blastocysts was analyzed. The results showed that using 3 Hz vibration and tilting can significantly improve the parthenogenetic development potential of immature mice oocytes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.