As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clinical texts are written with acronyms, abbreviations and medical jargon expressions to save time. This hinders full comprehension not just for medical experts but also laypeople. This paper attempts to disambiguate acronyms with their given context by comparing a web mining approach via the search engine BING and a conversational agent approach using ChatGPT with the aim to see, if these methods can supply a viable resolution for the input acronym. Both approaches are automated via application programming interfaces. Possible term candidates are extracted using natural language processing-oriented functionality. The conversational agent approach surpasses the baseline for web mining without plausibility thresholds in precision, recall and F1-measure, while scoring similarly only in precision for high threshold values.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.