As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Hand and joint mobility recovery involve performing a set of exercises. Gestures are often used in the hand mobility recovery process. This paper discusses the selection and the use of 2 models of neural networks for the classification of data that describe Leap Motion gestures. The gestures are: the hand opening and closing gesture and the palm rotation gesture. The purpose is the optimal selection of the neural network model to be used in the classification of the data describing the recovery gestures. The models chosen for the classification of the two gestures were: Linear Discriminant Analysis (LDA) and K-neighbors Classifier (KNN). The accuracies achieved in the classification of the gestures for each model are: 0.91 – LDA and 0.98 – KNN.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.