As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Numerous classification systems have been developed over the years, systems which not only provide assistance to dermatologists, but also enable individuals, especially those living in areas with low medical access, to get a diagnosis. In this paper, a Machine Learning model, which performs a binary classification, and, which for the remainder of this paper will be abbreviated as ML model, is trained and tested, so as to evaluate its effectiveness in giving the right diagnosis, as well as to point out the limitations of the given method, which include, but are not limited to, the quality of smartphone images, and the lack of FAIR image datasets for model training. The results indicate that there are many measures to be taken and improvements to be made, if such a system were to become a reliable tool in real-life circumstances.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.