Background:
Artificial intelligence (AI) can potentially increase the quality of telemonitoring in chronic obstructive pulmonary disease (COPD). However, the output from AI is often difficult for clinicians to understand due to the complexity. This challenge may be accommodated by visualizing the AI results, however it hasn’t been studied how this could be done specifically, i.e., considering which visual elements to include.
Aim:
To investigate how complex results from a predictive algorithm for patients with COPD can be translated into easily understandable data for the clinicians.
Methods:
Semi-structured interviews were conducted to explore clinicians’ needs when visualizing the results of a predictive algorithm. This formed a basis for creating a prototype of an updated user interface. The user interface was evaluated using usability tests through the “Think aloud” method.
Results:
The clinicians pointed out the need for visualization of exacerbation alerts and the development in patients’ data. Furthermore, they wanted the system to provide more information about what caused exacerbation alerts. Elements such as color and icons were described as particularly useful. The usability of the prototype was primarily assessed as easily understandable and advantageous in connection to the functions of the predictive algorithm.
Conclusion:
Predictive algorithm use in telemonitoring of COPD can be optimized by clearly visualizing the algorithm’s alerts, clarifying the reasons for algorithm output, and by providing a clear overview of the development in the patient’s data. This can contribute to clarity when the clinicians should act and why they should act on alerts from predictive algorithms.