As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper reviews methods for evaluating and analyzing the understandability of classification models in the context of data mining. The motivation for this study is the fact that the majority of previous work on evaluation and optimization of classification models has focused on assessing or increasing the accuracy of the models and thus user-oriented properties such as comprehensibility and understandability have been largely overlooked. We conduct a quantitative survey to examine the concept of understandability from the user's point of view. The survey results are analyzed using the analytic hierarchy process (AHP) to rank models according to their understandability. The results indicate that decision tree models are perceived as more understandable than rule-based models. Using the survey results regarding understandability of a number of models in conjunction with quantitative measurements of the complexity of the models, we are able to establish a negative correlation between the complexity and understandability of the classification models, at least for one of the two studied data sets.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.