As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Belief-based programming is a probabilistic extension of the Golog programming language family, where every action and sensing could be noisy and every test refers to the subjective beliefs of the agent. Such characteristics make it rather suitable for robot control in a partial-observable uncertain environment. Recently, efforts have been made in providing formal semantics for belief programs and investigating the hardness of verifying belief programs. Nevertheless, a general algorithm that actually conducts the verification is missing. In this paper, we propose an algorithm based on symbolic dynamic programming to verify belief programs, an approach that generalizes the dynamic programming technique for solving (partially observable) Markov decision processes, i.e. (PO)MDP, by exploiting the symbolic structure in the solution of first-order (PO)MDPs induced by belief program execution.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.