As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In the last few years, Federated Learning (FL) has received extensive attention from the research community because of its capability for privacy-preserving, collaborative learning from heterogeneous data sources. Most FL studies focus on either average performance improvement or the robustness to attacks, while some attempt to solve both jointly. However, the performance disparities across clients in the presence of attackers have largely been unexplored. In this work, we propose a novel Fair Federated Learning scheme with Attacker Detection capability (abbreviated as FFL+AD) to minimize performance discrepancies across benign participants. FFL+AD enables the server to identify attackers and learn their malign intent (e.g., targeted label) by investigating suspected models via top performers. This two-step detection method helps reduce false positives. Later, we introduce fairness by regularizing the benign clients’ local objectives with a variable boosting parameter that gives more emphasis on low performers in optimization. Under standard assumptions, FFL+AD exhibits a convergence rate similar to FedAvg. Experimental results show that our scheme builds a more fair and more robust model, under label-flipping and backdoor attackers, compared to prior schemes. FFL+AD achieves competitive accuracy even when 40% of the clients are attackers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.