As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We study the problem of allocating indivisible items to budget-constrained agents, aiming to provide fairness and efficiency guarantees. Specifically, our goal is to ensure that the resulting allocation is envy-free up to any item (EFx) while minimizing the amount of inefficiency that this needs to introduce. We first show that there exist two-agent problem instances for which no EFx allocation is Pareto-efficient. We, therefore, turn to approximation and use the (Pareto-efficient) maximum Nash welfare allocation as a benchmark. For two-agent instances, we provide a procedure that always returns an EFx allocation while achieving the best possible approximation of the optimal Nash social welfare that EFx allocations can achieve. For the more complicated case of three-agent instances, we provide a procedure that guarantees EFx, while achieving a constant approximation of the optimal Nash social welfare for any number of items.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.