As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Federated Learning (FL) is essential for building global models across distributed environments. However, it is significantly vulnerable to data and model poisoning attacks that can critically compromise the accuracy and reliability of the global model. These vulnerabilities become more pronounced in heterogeneous environments, where clients’ data distributions vary broadly, creating a challenging setting for maintaining model integrity. Furthermore, malicious attacks can exploit this heterogeneity, manipulating the learning process to degrade the model or even induce it to learn incorrect patterns. In response to these challenges, we introduce RFCL, a novel Robust Federated aggregation method that leverages CLustering and cosine similarity to select similar cluster models, effectively defending against data and model poisoning attacks even amidst high data heterogeneity. Our experiments assess RFCL’s performance against various attacker numbers and Non-IID degrees. The findings reveal that RFCL outperforms existing robust aggregation methods and demonstrates the capability to defend against multiple attack types.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.