As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Modelling Adverse Events with the TOP Phenotyping Framework
Christoph Beger, Anna Maria Boehmer, Beate Mussawy, Louisa Redeker, Franz Matthies, Ralph Schäfermeier, Annette Härdtlein, Tobias Dreischulte, Daniel Neumann, Alexandr Uciteli
The detection and prevention of medication-related health risks, such as medication-associated adverse events (AEs), is a major challenge in patient care. A systematic review on the incidence and nature of in-hospital AEs found that 9.2% of hospitalised patients suffer an AE, and approximately 43% of these AEs are considered to be preventable. Adverse events can be identified using algorithms that operate on electronic medical records (EMRs) and research databases. Such algorithms normally consist of structured filter criteria and rules to identify individuals with certain phenotypic traits, thus are referred to as phenotype algorithms. Many attempts have been made to create tools that support the development of algorithms and their application to EMRs. However, there are still gaps in terms of functionalities of such tools, such as standardised representation of algorithms and complex Boolean and temporal logic. In this work, we focus on the AE delirium, an acute brain disorder affecting mental status and attention, thus not trivial to operationalise in EMR data. We use this AE as an example to demonstrate the modelling process in our ontology-based framework (TOP Framework) for modelling and executing phenotype algorithms. The resulting semantically modelled delirium phenotype algorithm is independent of data structure, query languages and other technical aspects, and can be run on a variety of source systems in different institutions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.