As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This study presents a neural-based algorithm for the automatic detection of landslides on Stromboli volcano (Italy). It has been shown that landslides are an important short-term precursor of effusive eruptions of Stromboli. In particular, an increase in the occurrence rate of landslides was observed a few hours before the beginning of the February 2007 effusive eruption. Automating the process of detection of these signals can help analysts and represents a useful tool for the monitoring of the stability of the Sciara del Fuoco flank of Stromboli volcano. A multi-layer perceptron neural network is here applied to continuously discriminate landslides from other signals recorded at Stromboli (e.g., explosion quakes, tremor signals), and its output is used by an automatic system for the detection task. To correctly represent the seismic data, coefficients are extracted from both the frequency domain, using the linear predictive coding technique, and the time domain, using temporal waveform parameterization. The network training and testing was carried out using a dataset of 537 signals, from 267 landslides and 270 records that included explosion quakes and tremor signals. The classification results were 99.5% predictive for the best net performance, and 98.7% when the performance was averaged over different net configurations. Thus, this detection system was effective when tested on the 2007 effusive eruption period. However, continuing investigations into different time intervals are needed, to further define and optimize the algorithm.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.