As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In classification problems, lack of knowledge of the prior distribution may make the application of Bayes' rule inadequate. Uniform or arbitrary priors may often provide classification answers that, even in simple examples, may end up contradicting our common sense about the problem. Entropic priors, determined via the application of the maximum entropy principle, seem to provide a much better answer and can be easily derived and applied to classification tasks when no more than the likelihood functions are available. In this paper we present an example in which the use of the entropic priors is compared to the results of the application of Dempster-Shafer theory.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.