As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Ontologies are used in various domains, with RDF and OWL being prominent standards for ontology development. RDF is favored for its simplicity and flexibility, while OWL enables detailed domain knowledge representation. However, as ontologies grow larger and more expressive, reasoning complexity increases, and traditional reasoners struggle to perform efficiently. Despite optimization efforts, scalability remains an issue. Additionally, advancements in automated knowledge base construction have created large and expressive ontologies that are often noisy and inconsistent, posing further challenges for conventional reasoners. To address these challenges, researchers have explored neuro-symbolic approaches that combine neural networks’ learning capabilities with symbolic systems’ reasoning abilities. In this chapter, we provide an overview of the existing literature in the field of neuro-symbolic deductive reasoning supported by RDF(S), the description logics EL and ALC, and OWL 2 RL, discussing the techniques employed, the tasks they address, and other relevant efforts in this area.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.