As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this study, we analyzed the utility of electromyogram (EMG) signals recorded from the zygomaticus major (zEMG), the trapezius (tEMG), and the corrugator supercilii (cEMG) for emotion detection. We computed eleven-time domain features from the EMG signals to classify the emotions such as amusing, boring, relaxing, and scary. The features were fed to the logistic regression, support vector machine, and multilayer perceptron classifiers, and model performance was evaluated. We achieved an average 10-fold cross-validation classification accuracy of 67.29%. 67.92% and 64.58% by LR using the features extracted from the EMG signals recorded from the zEMG, tEMG, and cEMG, respectively. The classification accuracy improved to 70.6% while combining features from the zEMG and cEMG for the LR model. However, the performance dropped while including the features of EMG from all three locations. Our study shows the importance of utilizing the zEMG and cEMG combination for emotion recognition.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.