As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Coronavirus can lead to respiratory illnesses ranging from mild to severe, and even death, which makes early detection critical. However, current COVID-19 (Coronavirus Disease 2019) detection methods are not only expensive but also time-consuming. This poses a challenge, especially with an increasing number of patients and demand for testing kits. Waiting for test results for a few days is not ideal, as the outbreak can spread quickly in the meantime. To address this issue, we propose a COVID-19 prediction infrastructure using deep learning. This innovative android-based application uses a Convolutional Neural Network model, trained on a custom dataset with an accuracy of 97 percent, to predict whether COVID-19 is present or not. With this fast and low-cost approach, users can quickly detect COVID-19 and take appropriate actions to reduce the risk of transmission.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.