As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Microarray technology facilitates the monitoring of the expression profile of a large number of genes across different experimental conditions or tissue samples simultaneously. Microarray technology is being utilized in cancer diagnosis through the classification of the tissue samples. In this article, we have presented an integrated unsupervised technique for cancer classification. The proposed method is based on multiobjective differential fuzzy clustering of the tissue samples. In this regard, real coded encoding of the cluster centres is used and two fuzzy cluster validity indices are simultaneously optimized. The resultant set of near-Pareto-optimal solutions contains a number of non-dominated solutions. Each such solution has been improved by a novel technique based on Support Vector Machine (SVM) classification. Thereafter, the final clustering solution is produced by majority voting ensemble technique of all improved solutions. The performance of the proposed multiobjective clustering method has been compared to several other microarray clustering algorithms for three publicly available benchmark cancer data sets, viz., leukemia, Colon cancer and Lymphoma data to establish its superiority. Also statistical significance tests have been conducted to establish the statistical superiority of the proposed clustering method.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.